

Course S	yllabus
Franklin High School	2019-2020
Course Title: NGSS Biology	Grade Level(s): 10
Prerequisites: NGSS Physics, NGSS Chemistry	
Course description	
Course description:	of modern life science as outlined in the Next
This lab-based course covers the foundational principles Generation Science Standards (NGSS). We will learn the	
and engineering practices utilized by professionals in ST	
Students will work in small teams to complete three maje	or investigations during the course contributing data to
ongoing research projects.	4
 Students will explore ecosystem health using ar Students will investigate natural selection throu 	thropods as an indicator species. gh blue-green algae that live in extreme environments.
•	tem, and will measure the changes their choices make
in efficiency of food production.	C C
Additionally, there will be a focus on how we can utilize	
the local level, from air pollution to climate change, and progress on such issues.	now those local solutions can contribute to global
Standards:	

We will address the NGSS performance expectations for Life Science and some of the performance expectations for Earth and Space Science as well as Engineering and Technology. For a more detailed look at the specific standards, see this short link: <u>http://bit.ly/NGSS_Bio</u>

Schedule of topics/units covered:

The following headings provide a thematic overview of the standards for the year.

- 1) Structure and Function
- 2) Inheritance and Variation of Traits
- 3) Matter and Energy in Organisms and Ecosystems
- 4) Interdependent Relationships in Ecosystems
- 5) Natural Selection and Evolution.

Differentiation/accessibility strategies and supports (TAG, ELL, SpEd, other): In addition to being familiar with each student's identification status we use universal design strategies so that there are multiple entry points to every lesson. Assessments will be individualized, proficiency based and differentiated so that all students show evidence of academic achievement.

Final proficiencies: Please see Assessment section below.

Assessment (pre/post)/evaluation/grading policy:

Assessment and Grading:

This class will be graded using a proficiency-based system. A student is proficient in a skill if they can demonstrate, and repeat, a thorough knowledge, understanding, and performance of the skill. The goal is to prepare all students for success in AP classes, required State assessments, college, and careers.

Proficiency will be assessed using 4 criteria, described below. All summative assignments will be categorized into a criterion and assessed based on a rubric for that criterion, available in students' science notebooks after week 2 and on all summative assignments. All scores will be on a 1-4 scale and will be averaged within each criterion to calculate the score. Then, all 4 criteria will be averaged to calculate the final grade. The grading scale information is on the next page.

1. Constructing Explanations and Communicating Scientific Information

At the end of each unit, students should be able to:

a. explain scientific knowledge and the evidence supporting that scientific knowledge

b. create or interpret scientific models, and connect the model to the evidence

c. obtain, analyze and evaluate scientific information

2. Asking Questions and Identifying Problems

At the end of the 11th grade year, students should be able to:

a. explain a scientific question and the connection between that question and content in class

b. formulate a testable hypothesis and make predictions

c. explain the independent variable, dependent variable, and how to measure each

d. explain an engineering problem and the criteria and constraints specific to that problem

3. Analyzing and Interpreting Data and Designing Solutions

At the end of the 11th grade year, students should be able to:

a. present data in tables, graphs and other relevant forms

b. explain conclusions based on data through claim, evidence, reasoning

c. evaluate whether the criteria and constraints of an engineering design challenge were met by the design proposed

d. propose novel questions based on the results of an experiment

4. Applications of Science in Society

At the end of the 11th grade year, students should be able to:

a. explain the ways in which Biology is applied to solve problems and answer questions in the real world

b. discuss and evaluate the ethical impacts of how Biology is applied to solve problems and answer questions

c. document the work of others and sources of information used

Your overall semester grade is calculated using the average of the four individual criterion scores. Please note that Synergy/StudentVue will not display a D, such that a grade of 2.0 is passing even if outside of progress reports, it displays as an F.

At the end of each semester (January and June), averages convert to letter grades determined by the following:

A 4.0-3.6 B 3.5-3.0 C 2.5-2.9 D 2.0-2.4 F < 1.9

Grades should be based the student's demonstration of understanding of the standards.

Behavioral expectations:

Expectations:

All voices are to be respected and heard in this class. Scientific discourse involves discussing concepts and ideas that often have no one correct answer, with many stakeholders who have firm views on what is the best course of action. Thus, we will practice discussing a variety of science topics throughout the school year.

All rules of student conduct outlined in the student handbook are, of course, in effect in this class. Pay particular attention to rules pertaining to the policies related to cell phones and academic dishonesty/plagiarism. Science is built upon the work of many others and citing your sources is one way to acknowledge their contribution to your growth and learning.

Behavioral Expectations:

At Franklin High School, in addition to following all school rules, we expect staff and students to: **Strive** to be...

Thoughtful	We celebrate the
	diversity and recognize
	the varied learning
	needs of our peers
	We put
	time and effort into our
	work
	We are
	engaged in the
	classroom and learn
	bell-to-bell

	We process
	complex issues with
	care
Respectful	We respect the
	diverse learning needs
	of our peers.
	We follow
	directions and class
	norms.
	We do not
	use racist, sexist, or
	homophobic language
	of any kind.
	We keep distractions,
	such as electronic
	devices, put away
	during class time,
	unless otherwise
	directed.
Organized	We are present and on
0	time for class.
	We bring all
	necessary materials.
	We keep
	track of assignments,
	deadlines, and
	activities.
Neighborly	We only leave class
U ,	when we have a hall
	pass.
	We treat
	the learning
	environment with care.
	We clean
	up after ourselves.
	We help
	when we see a need.
Generous	We share our resources
	with each other.
	We offer a
	fresh start to staff and
	ourselves.
	We help
	each other when
	needed.
	needed.

If problems arise as a result of disregard for behavioral expectations, these are the **consequences**:

1. Warning

2. Talk to you, privately if possible

3. Conference with you and school support team / Level 1 Report documentation

4. Call Home

5. If these steps do not resolve the problem, a conference with school administrator will be necessary / Level 2-3 Referral

Safety issues and requirements: All students are required to return a signed district Science Safety Agreement form prior to participation in any lab work.